
Volatility Smile Analysis
Through the Heston Model

Pablo Marchesi
October 2024

Abstract

This paper presents a simple approach to modeling the volatility smile using
the Heston model, which incorporates stochastic volatility. We investigate the
impact of different model parameters on the shape of the volatility smile and
the resulting probability density function of log stock prices. A comparative
analysis is conducted with traditional constant volatility models, such as the
Geometric Brownian Motion, highlighting the advantages and limitations of
each approach. Our study aims to provide insights into the practical implica-
tions of stochastic volatility for option pricing.
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1 The Volatility Smile

The Black-Scholes formula revolutionized financial engineering by providing the first
closed-form solution for pricing European options. Its introduction sparked signifi-
cant growth in the global derivatives markets, offering traders and investors a pow-
erful tool for evaluating options and managing risk more effectively.

However, the Black-Scholes model relies on several unrealistic assumptions, such
as constant implied volatility and stock prices following a Geometric Brownian Mo-
tion (GBM), which assumes log-normal price distribution. The limitations of these
assumptions became evident during the 1987 market crash, known as Black Monday,
when the Dow Jones index plummeted by 22.6% in a single day. Under the GBM
framework, this event would be a 27-standard deviation occurrence—an outcome so
improbable that it borders on the impossible. This extreme deviation highlighted
the need for more realistic models to capture market behavior.

Figure 1: Dow Jones daily returns

Black Monday revealed that large price swings occur far more frequently than
predicted by the Geometric Brownian Motion model, leading to fat-tailed distribu-
tions that significantly deviate from the log-normal distribution assumed by GBM.
Soon after the crash, options traders noticed an unusual pattern: prices for deep out-
of-the-money puts were unexpectedly high. In the Black-Scholes framework, higher
option prices indicate higher implied volatility. When traders plotted implied volatil-
ity against the strike prices of these options, the resulting curve was not flat, as the
theory would predict, but exhibited a distinct smile shape for deep out-of-the-money
options. This phenomenon, known as the volatility smile, contradicted the assump-
tions of the Black-Scholes model, where implied volatility should be constant across
strike prices.

The need for a more realistic market model became clear, prompting the devel-
opment of stochastic volatility models. One of the most notable is the Heston model,
introduced in 1993. Unlike the Black-Scholes framework, the Heston model accounts
for the randomness of volatility itself, producing fat-tailed distributions for stock
prices and allowing for the modeling of the volatility smile. This approach offered a
significant improvement in capturing market behaviors that the Black-Scholes model
could not explain.
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2 The Heston Model

The Heston model incorporates stochastic volatility to Geometric Brownian Motion
by adding a CIR (Cox, Ingersoll, Ross) process that models the instantaneous vari-
ance, νt of the GBM. This process is mean-reverting, which implies that volatility
tends to return to a long-term mean after large deviations. We can confirm this
empirically by looking at the VIX index, which shows the 30-day implied volatility
for the S&P500 options.

Figure 2: The VIX index presents a mean-reverting behaviour

The dynamics of the Heston model are governed by the following stochastic dif-
ferential equations:

dSt = µSt dt+
√
νtSt dW

S
t (1)

dνt = κ(θ − νt) dt+ ξ
√
νt dW

ν
t (2)

E[dWS
t dW ν

t ] = ρ dt (3)

Where:

• St is the stock price at time t,

• νt is the variance of the asset price at time t,

• µ is the drift rate of the asset price,

• κ is the rate of mean reversion of the variance,

• θ is the long-run mean of the variance,

• ξ is the volatility of volatility,

• ρ is the correlation between the Wiener processes WS
t and W ν

t ,

• WS
t and W ν

t are standard Brownian motions.

We will be focusing on how the main parameters of the Heston model (ν0, ξ, ρ, κ
and θ) affect the volatility smile of put options and the distribution of stock prices.
In addition, we will compare these results with the GBM model.
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3 The Initial Variance ν0

The first parameter we will examine is the initial variance, ν0. If we set all the other
parameters to 0, we have a constant volatility model (as GBM). By changing the
initial variance, we can modify the width of the PDF. It is also clear that we will
have a flat volatility smile, as we are assuming the variance constant.

Figure 3: Results for ν0 = 0.1

4 The Volatility of Volatility ξ

The second parameter of the Heston model is the volatility of volatility (or vol of vol,
for short), ξ. This parameter controls the kurtosis of the distribution of log prices.
In other words, it controls the tail risk or how fat the tails are. It is also in charge
of the curvature of the smile. If set ξ > 0 we get:

Figure 4: Results for ξ = 0.5

As we can see in the image, we now have curved implied volatility for the Heston
model, and the distribution of stock prices is considerably more fat-tailed than in the
GBM model. This is a more realistic market model that is able to capture extreme
events such as Black Monday.
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5 The Correlation Coefficient ρ

The stock prices and the volatility are usually negative-correlated. This is due to the
fact that whenever a market crash occurs, the volatility spikes significantly. This,
again, can be confirmed empirically by taking a look at the VIX index shown before.
It is clear that the volatility rises when the market dumps.

In the Heston model, this market behaviour is captured by the third equation of
the model, which explains the correlation between stock prices and their volatility.
We can adjust this correlation by changing the correlation coefficient, ρ, which we
will assume is negative for the above reasons. This parameter controls the asymmetry
of the distribution of log prices also known as the skewness.

Figure 5: Results for ρ = −0.5

By setting a negative correlation coefficient, we can generate negative-skewed
PDFs, which assign a higher probability to extreme dumps in the price of stocks. Re-
garding the volatility smile, we can observe that higher implied volatility is assigned
to deep-out-the-money put options. This shows that the investors are willing to pay
more for these options because they provide a hedge against the not-so-infrequent
market crashes.

6 The Mean-Reversion Parameters κ and θ

Lastly, we have two more parameters, θ, which is in charge of the long-term mean of
the volatility, and κ, which controls the speed of the mean-reverting behavior. If we
take the expected value of the stochastic volatility process we get:

E[νt] = ν0e
−κt + θ(1− e−κt) (4)

From this formula, we can deduce that as time t increases, the expected value
of the variance will converge to θ when κ is sufficiently large. In other words, with
these parameters, we can control the convergence in mean of the volatility process.
In the following example, we set θ close to the volatility of the Geometric Brownian
Motion, so that both the probability density function and the volatility smile of the
Heston model approach those of the GBM when κ is large enough.
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Figure 6: Results for κ = 0.2 and θ = 0.3

7 Methodology

In this section, we will provide a more detailed explanation of the calculations carried
out in this analysis of the volatility smile and the PDFs. The first step involved
simulating the Heston and GBM processes using an Euler-Maruyama discretization
scheme and then a Monte Carlo simulation. The discretized equations are:

St = St−1 + µSt−1∆t+
√
vt−1St−1∆WS

t , (5)

vt = vt−1 + κ(θ − vt−1)∆t+ ξ
√
vt−1∆W v

t , (6)

∆W ν
t = ρ∆WS

t +
√

1− ρ2∆Wt (7)

Where we have computed ∆WS
t and ∆Wt as:

∆WS
t = Z(1)

√
∆t where Z(1) ∼ N (0, 1) (8)

∆Wt = Z(2)
√
∆t where Z(2) ∼ N (0, 1) (9)

Equation (7) matches with (3) as:

E[∆WS
t ∆W ν

t ] = E[∆WS
t (ρ∆WS

t +
√

1− ρ2∆Wt)] = ρE[(∆WS
t )

2] = ρ∆t

For the Geometric Brownian Motion, we have discretized the model as:

St = St−1 + µSt−1∆t+ σSt−1∆WS
t (10)

Note that, in this case, the standard deviation (therefore the variance) is constant
and is represented by the parameter σ.

After simulating both processes, we can calculate the value of a put option by
discounting the expected value of the payoffs at expiration under a risk-neutral prob-
ability measure Q, given a strike priceK, the risk-free rate r and the time to maturity
T . This calculation can be summarised with the following formula:

VMC(ST ,K, T, r) = e−rT EQ[max(K − ST , 0)] (11)
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Having obtained the option prices, we can calculate the implied volatility by
inverting the Black-Scholes formula using the Newton method. This calculation
enables us to obtain the implied volatility for a given option price (calculated with
the Monte Carlo approach). The price of a European put option, based on the
Black-Scholes model, is given by the formula:

VBS(S0,K, T, r, σ) = Ke−rTΦ(−d2)− S0Φ(−d1) (12)

where:

d1 =
ln
(
S0
K

)
+
(
r + 1

2σ
2
)
T

σ
√
T

d2 = d1 − σ
√
T

To calculate the implied volatility, we use the Newton-Raphson method. The
steps are as follows:

• Start with an initial guess for volatility σ0

• Iteratively update the volatility using the following formula until convergence:

σn+1 = σn − VBS(σn)− VMC

Vega(σn)

where:

– VBS(σn) is the option price calculated using the Black-Scholes formula for
the current volatility guess σn

– VMC is the option price calculated with the Monte Carlo approach

– Vega(σn) is the sensitivity of the option price with respect to volatility,
given by:

Vega(σ) = S0Φ
′ (d1(σ))

√
T

– d1(σ) is defined as:

d1(σ) =
ln
(
S0
K

)
+
(
r + 1

2σ
2
)
T

σ
√
T

• The iteration continues until |VBS(σn)− VMC | < tol where tol is a predefined
tolerance.

Lastly, we have to compute the PDF of both the Heston model and the GBM.
In the case of the Heston model, we have used a Kernel Density Estimation (KDE)
using as input data the log prices of the simulation ST .

For a more detailed explanation of the implementation in Python, please click
here.

8 Conclusions

After studying the parameters of the Heston model, we have confirmed the advan-
tages of this stochastic volatility approach. It allows us to create a more realistic
market model compared to the Geometric Brownian Motion. Specifically, we have
generated more accurate stock price distributions, which exhibit fat tails and negative
skewness and have successfully captured the dynamics of implied volatility.
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